If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+19w+90=0
a = 1; b = 19; c = +90;
Δ = b2-4ac
Δ = 192-4·1·90
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*1}=\frac{-20}{2} =-10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*1}=\frac{-18}{2} =-9 $
| 7,9-2x+1.2=4,7 | | -5(2x-6)=7(2x-4 | | .3435435494341374354x+5435435721424654534=2 | | I8x-2(x+9)=x+47 | | 5x-15=240-2x+25 | | 9x-2=-5(2-3x) | | 3•(8x+4)=300 | | 20n^2-13n-21=0 | | x/10-6=-6x= | | 6^(-0.2x)-3=7 | | x/10-6=-6 | | 0.23y=2.3 | | a/10–8=-24 | | -20=-180+2x^2 | | 6p=0.56 | | y^2+64y-1024=0 | | 1/4x+31/2=2(1/2x+3/4 | | 8(x+4)=8(x+12) | | 8(x+4)=8(x+12 | | (1/3)z^2-9=0 | | x^=16x-28 | | 6x+3°=4x+29 | | 6b^2+2b-54=2b | | 22+6x=3x+24 | | 2/5m^2-40=0 | | 2x=X/2+99 | | 3x+1.5x=83.6 | | 5x=10^5 | | 11^6x=2x-13/ | | X=4x-188 | | 1/3z^2=9 | | 1/3z^2-9=0 |